A481 - Expiratory ventilation assistance improves arterial oxygenation in ARDS – a randomized controlled study in pigs

J Schmidt ; C Wenzel ; S Spassov ; S Wirth ; S Schumann
Medical Center - University of Freiburg, Department of Anesthesiology and Critical Care, Freiburg, Germany

Introduction:
Mechanical ventilation aggravates ARDS. Expiratory ventilation assistance (EVA) showed an improved oxygenation in lung healthy pigs with similar tracheal pressure (p_{trach}) amplitude and tidal volume (V_T). We hypothesized that EVA improves gas exchange and attenuates ventilator induced lung injury in a porcine model of ARDS.

Methods:
19 pigs with an oleic acid induced moderate ARDS (initial Horovitz index (HI) 100-150 mmHg) were randomly allocated to volume controlled ventilation or EVA ventilation with identical ventilation parameters (FiO$_2$ 0.8, V_T 7 ml/kg body weight, PEEP 9 mbar, respiratory rate set to maintain arterial blood pH >7.2). PaO$_2$ and p_{trach} were measured every 30 min. After 3h lung tissue was excised, stained and alveolar wall thickness measured. Statistics were performed with linear mixed model analyses and unpaired t-test.

Results:
5 pigs were excluded due to HI < 100 mmHg (n=2), malignant arrhythmia (n=1) and software error (n=2). EVA elevated PaO$_2$ (107±11.3 vs. 164±21 mmHg, p=0.04) and mean p_{trach} (16.7±1.6 vs. 21.5±1.1 mbar, p<0.0001). Alveolar walls were thinner in the EVA group (7.8±0.2 vs. 5.5±0.1 µm, p<0.0001).

Conclusion:
EVA ventilation improves gas exchange due to elevated mean p_{trach} in experimental ARDS. Reduced alveolar wall thickness indicates potential lung protective effects.

Funding: European Union, Horizon 2020 research and innovation programme, Grant #691519.